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1 Search
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x2
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x6

”Algorithms that cannot remember the past are doomed to repeat it.”
– Chapter 3, Russell and Norvig

1.1 Definition of a Search Problem

A search problem may be broken down into the following parts:

1. Initial State: The starting point of the AI.

2. Actions: Set of possible actions given a state.

actions(s)→ {a1, a2, a3}

3. Result: Resulting state after applying an action.

result(s, a)→ s′

4. Goal Test: Determines whether the AI is in the goal state.

test(s)→ True | False

5. Path Cost: Total cost of a path from start to end state.

pathcost(s0 → s1 → s2)→ n

6. Step Cost: Cost of a single step.

stepcost(s, a, s
′)→ n



Algorithm 1 Depth-First Search (DFS)

1: Initialize visited as an empty set
2: Add start node to visited
3: for each neighbor in graph[start] do
4: if neighbor is not in visited then
5: Recursively call DFS on neighbor
6: end if
7: end for
8: return visited

1.2 Depth-First Search (DFS)

Definition: Depth-First Search (DFS) is an algorithm that explores as deeply as possible
along each branch before backing up to explore the next branch.

Key Characteristics:

• Strategy: Always expands the deepest node in the search space first.

• Backtracking: Backs up to the next deepest node that has unexplored successors
when no further progress can be made.

• Optimality: Not cost-optimal—DFS returns the first solution it finds, even if it’s
not the cheapest.

• Time Complexity:

– Worst Case: O(bm), where b is the branching factor and m is the maximum
depth of the search space.

– Best Case: O(d), where d is the depth of the shallowest solution.

• Space Complexity:

– Recursive Implementation: O(m), where m is the maximum depth, due
to the recursive call stack.

– Iterative Implementation: O(b ·m), where b is the branching factor and m
is the maximum depth of the search space, accounting for the explicit stack
used.

1.3 Depth-Limited Search (DLS)

Definition: Depth-Limited Search (DLS) is a modified version of Depth-First Search
(DFS) that imposes a fixed depth limit, l, to prevent infinite exploration in deeply nested
or cyclic search spaces.
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Algorithm 2 Depth-Limited Search (DLS)

1: Initialize visited as an empty set
2: Set a depth limit l
3: for each node at depth ≤ l do
4: Expand node and explore its neighbors
5: Add explored nodes to visited
6: end for
7: return Fail if no solution is found within depth l

Key Characteristics:

• Depth Restriction: Imposes a depth limit l to restrict the depth of exploration.

• Leaf Nodes: Treats all nodes at depth l as leaf nodes and does not expand further.

• Fallback: If no solution is found within the limit, the algorithm returns Fail.

• Time Complexity:

– Worst Case: O(bl), where b is the branching factor and l is the depth limit.

– Best Case: O(d), where d is the depth of the shallowest solution (if d ≤ l).

• Space Complexity:

– Recursive Implementation: O(l), due to the depth of the recursive call
stack.

– Iterative Implementation: O(b · l), accounting for the explicit stack used
to track nodes at each level.

Advantages:

• Prevents infinite exploration in graphs with infinite depth or cycles.

• Useful when a maximum solution depth is known in advance.

• Reduces the memory consumption compared to Breadth-First Search (BFS).

Challenges:

• Choosing Depth Limit: Selecting an appropriate l can be challenging:

– If l is too low, the solution may be missed.

– If l is too high, the algorithm may perform unnecessary computations.

• Not guaranteed to find the shallowest solution unless l is set precisely.
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Algorithm 3 Iterative Deepening Search (IDS)

1: for depth limit l from 0 to max depth do
2: Call Depth-Limited Search (DLS) with depth limit l
3: if goal is found then
4: return goal
5: end if
6: end for
7: return Fail if no solution is found within the maximum depth

1.4 Iterative Deepening Search (IDS)

Definition: Iterative Deepening Search (IDS) is an algorithm that combines the space
efficiency of Depth-First Search (DFS) with the completeness of Breadth-First Search
(BFS). It performs repeated Depth-Limited Searches (DLS) with increasing depth limits
until the solution is found.

Key Characteristics:

• Combination of Strategies: IDS combines the advantages of DFS (low memory
usage) and BFS (completeness).

• Incremental Depth Limit: Performs multiple Depth-Limited Searches (DLS)
with depth limits starting from 0, incrementing until a solution is found.

• Optimality: Ensures optimal solutions are found if all step costs are equal.

• Time Complexity:

– Worst Case: O(bd), where b is the branching factor and d is the depth of the
shallowest solution.

– Overhead: IDS repeats nodes at shallower depths, but the overhead is bounded
and typically less than twice the cost of a single DFS to depth d.

• Space Complexity:

– O(d), where d is the depth of the shallowest solution. This is because IDS only
keeps track of the current path and the depth limit, making it as memory-
efficient as DFS.

Applications:

• Ideal for problems where the depth of the solution is unknown.

• Commonly used in scenarios like puzzle-solving and pathfinding.

• Particularly effective when memory resources are limited, and completeness is re-
quired.
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1.5 Breadth-First Search (BFS)

Definition: Breadth-First Search (BFS) is an uninformed search algorithm that explores
all nodes at the current depth level before moving to nodes at the next level. It is
particularly effective for finding the shortest path in an unweighted graph or tree.

Algorithm 4 Breadth-First Search (BFS)

1: Initialize queue with the start node
2: Initialize visited as an empty set
3: while queue is not empty do
4: Dequeue node from the queue
5: if node is not in visited then
6: Add node to visited
7: for each neighbor of node do
8: if neighbor is not in visited then
9: Enqueue neighbor
10: end if
11: end for
12: end if
13: end while
14: return Fail if the goal is not found

Key Characteristics:

• Level-Order Exploration: BFS explores all nodes at the current depth level
before moving deeper.

• Shortest Path: Guaranteed to find the shortest path in terms of the number of
edges if step costs are equal.

• Completeness: BFS is complete—it will find a solution if one exists.

• Time Complexity: O(bd), where b is the branching factor and d is the depth of
the shallowest solution.

• Space Complexity: O(bd), where b is the branching factor and d is the depth of
the shallowest solution, as BFS stores all nodes at the current depth in memory.

Drawbacks:

• Memory-intensive: BFS requires storing all nodes at the current depth level,
which can lead to high memory usage in large graphs.

• Exponential growth: In graphs with a high branching factor, the memory usage
grows exponentially with the depth of the search.

1.6 Uniform-Cost Search (UCS)

Definition: Uniform-Cost Search (UCS) is an uninformed search algorithm that explores
nodes based on the lowest path cost. It guarantees finding the least-cost solution in graphs
where costs are non-negative. UCS is equivalent to Dijkstra’s algorithm when applied
to graphs.

Key Characteristics:
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Algorithm 5 Uniform-Cost Search (UCS)

1: Initialize a priority queue with (cost, start, path)
2: Initialize visited as an empty set
3: while priority queue is not empty do
4: Dequeue the element with the lowest cost
5: Add node to visited
6: if node is the goal then
7: return path
8: end if
9: for each neighbor of node do
10: Compute the total cost to neighbor
11: if neighbor is not in visited then
12: Enqueue (cost, neighbor, updated path) into the priority queue
13: end if
14: end for
15: end while
16: return Fail if no solution is found

• Node Expansion Strategy: UCS expands the node with the lowest accu-
mulated path cost, ensuring the least-cost path to the goal is found.

• Optimality: UCS is optimal if all edge costs are non-negative.

• Completeness: UCS is complete, meaning it will find a solution if one exists.

• Time Complexity:

– O(bC
∗/ϵ), where b is the branching factor, C∗ is the cost of the optimal solution,

and ϵ is the smallest step cost.

• Space Complexity:

– O(bC
∗/ϵ), as UCS must store all nodes in the priority queue and visited set.

1.7 Bidirectional Search

Definition: Bidirectional Search is an algorithm that simultaneously explores the search
space from both the start and goal states, expanding nodes alternately in each direction.
The search terminates when the two frontiers meet, significantly reducing the search space
compared to unidirectional methods.
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Algorithm 6 Bidirectional Search

1: Initialize forward queue with the start node
2: Initialize backward queue with the goal node
3: Initialize forward visited and backward visited as empty sets
4: while forward queue and backward queue are not empty do
5: Expand the frontier of forward queue
6: if intersection is found with backward visited then
7: return Path Found
8: end if
9: Expand the frontier of backward queue
10: if intersection is found with forward visited then
11: return Path Found
12: end if
13: end while
14: return Fail if no intersection is found

Key Characteristics:

• Simultaneous Searches: Bidirectional Search runs two parallel searches: one
from the start node toward the goal, and the other from the goal node toward the
start.

• Meeting Point: The algorithm terminates when the two search frontiers intersect,
combining paths to construct the solution.

• Completeness: Guaranteed to find a solution if one exists.

• Optimality: If the search uses breadth-first expansion in both directions and all
step costs are uniform, it guarantees the shortest path.

• Time Complexity: O(bd/2), where b is the branching factor and d is the depth of
the solution. This is more efficient than unidirectional search (O(bd)).

• Space Complexity: O(bd/2), as each search stores the frontier and visited nodes,
but the depth is halved compared to unidirectional search.

1.8 A∗ Search

Definition: The A∗ search algorithm is an informed search technique that finds the
shortest path from a start node to a goal node. It combines the cost of reaching a
node (g(n)) with a heuristic estimate of the cost to reach the goal (h(n)), ensuring both
efficiency and optimality under the right conditions.
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Algorithm 7 A∗ Search Algorithm

1: Initialize a priority queue with (f-cost, start, path)
2: Initialize visited as an empty set
3: Set g(start) = 0 and compute f(start) = g(start) + h(start)
4: while priority queue is not empty do
5: Dequeue the node with the lowest f -cost
6: if node is the goal then
7: return path
8: end if
9: Add node to visited
10: for each neighbor of node do
11: Compute g(neighbor) = g(node) + cost
12: Compute f(neighbor) = g(neighbor) + h(neighbor)
13: if neighbor is not in visited then
14: Enqueue (f-cost, neighbor, updated path) into the priority queue
15: end if
16: end for
17: end while
18: return Fail if no solution is found

Key Characteristics:

• Node Expansion Strategy: Always expands the node with the lowest total cost
f(n) = g(n) + h(n).

• Completeness: Guarantees finding a solution if one exists, provided h(n) is ad-
missible.

• Optimality: Ensures the shortest path is found if h(n) is admissible and consistent.

• Time Complexity:

– O(bd) in the worst case, where b is the branching factor and d is the depth of
the shallowest solution.

– Can be faster depending on the quality of h(n).

• Space Complexity:

– O(bd), as A∗ must maintain all nodes in memory for its priority queue.

Conditions for Optimality:

• Admissibility: The heuristic h(n) must never overestimate the true cost to the
goal:

h(n) ≤ true cost to goal from n.

• Consistency: The heuristic must satisfy the triangle inequality:

h(n) ≤ c(n, n′) + h(n′),

where c(n, n′) is the cost between nodes n and n′.
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1.9 Other Informed Search Algorithms

• Greedy Best-First Search: Expands nodes with the smallest h(n); efficient but
not guaranteed to be optimal.

• Bidirectional A∗: Enhances A∗ by searching from both start and goal

• IDA∗: Iterative deepening version of A∗ that reduces memory usage.

• RBFS and SMA∗: Memory-bounded alternatives to A∗ for large problems.

• Beam Search: Limits the frontier size for faster but suboptimal results.

• Weighted A∗: Prioritizes goal-directed paths at the cost of guaranteed optimality.
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2 Simulated Annealing
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”Sometimes letting go and embracing randomness is the key to the so-
lution..”

– ?

2.1 N-Queens

Q

Q

Q

Q

The N-Queens problem involves placing N chess queens on an N × N chessboard so
that no two queens attack each other. Queens can attack horizontally, vertically, and
diagonally. The goal is to find an arrangement where none of these attacks occur.

Brute-Force Approach

In a brute-force approach, we try every possible placement of N queens on the board.
For example, on a 4× 4 board, there are:

16× 15× 14× 13 = 43,680 possible solutions.

This number grows exponentially as N increases, making the brute-force approach im-
practical for large N .

Optimization and Heuristics

Backtracking Algorithm:

1. Place queens row by row.

2. Check if the current placement is valid (no queens threaten each other).
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3. If valid, move to the next row.

4. If no valid placement exists, backtrack to the previous row and try a different
position.

Heuristic Methods:

• Simulated Annealing: Randomly explores the solution space, occasionally ac-
cepting worse placements to avoid getting stuck in suboptimal solutions.

• Genetic Algorithms: Uses evolutionary principles like selection, crossover, and
mutation to refine queen placements over multiple generations.

2.2 Hill Climbing Algorithm

Hill Climbing is a local search heuristic used to find an optimal solution by iteratively
making small changes to the current state. It aims to reach the highest possible point
(maximum value) in the search space by moving towards neighboring states that improve
the current solution.

• Algorithm Behavior: At each step, the algorithm evaluates neighboring states
and chooses the one that improves the current solution.

• Analogy: The process is analogous to climbing a hill, where the algorithm always
chooses the upward path in the hopes of reaching the peak.

• Drawback: Hill climbing can get stuck in local maxima, which are points that are
higher than neighboring points but not the highest in the entire search space. This
is similar to climbing a mountain and reaching a peak that is not the highest, with
no way to know it’s not the global maximum.

Local Maximum

Local Maximum

Global Maximum

x

f(x)

Figure 1: Illustration of Local Maxima and Global Maximum in a Hill Climbing Algo-
rithm. The algorithm may get stuck at one of the local maxima, even though the global
maxima is higher.
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2.2.1 Random Restart

Random Restart is a technique used to overcome the issue of getting stuck in local
maxima. The approach involves:

• Restarting the Hill Climbing algorithm from a new random state whenever it
reaches a local maximum.

• By performing multiple restarts, the algorithm has a higher chance of finding the
global maximum, as different starting points may lead to better solutions.

2.3 Simulated Annealing

Simulated Annealing is a probabilistic optimization algorithm inspired by the physical
process of heating and then slowly cooling a material to find its optimal configuration
(i.e., the lowest energy state). It is particularly useful for problems with a large search
space that may contain many local minima.

• Heating (High Temperature): During the initial stages, the algorithm explores
a wide range of possible solutions, including less optimal ones. This is similar to
the high temperature phase, where molecules are more likely to move freely.

• Cooling (Low Temperature): As the temperature decreases, the algorithm be-
comes more selective, refining the best solution found so far, similar to how cooling
solidifies molten metal into its final form.

• Acceptance of Worse Solutions: To avoid getting stuck in local optima, the
algorithm allows for worse solutions with a certain probability, which decreases as
the temperature cools. This probability is governed by:

P (accept) = exp

(
∆E

T

)
where ∆E is the change in energy (or cost), and T is the current temperature.

• Cooling Schedule: The rate at which the temperature decreases is crucial. Com-
mon cooling schedules include:

Tn+1 = αTn

where α is a constant between 0 and 1, and Tn is the temperature at iteration n.
A slower cooling schedule allows for better exploration of the solution space.

The Simulated Annealing algorithm proceeds as follows:
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Algorithm 8 Simulated Annealing

1: Initialize current as the initial state
2: Set the initial temperature T
3: while T > minimum temperature do
4: Pick a random neighboring solution next
5: Compute ∆E = value(next)− value(current)
6: if ∆E > 0 then
7: Accept next as the current state
8: else if exp(∆E/T ) > random(0, 1) then
9: Accept next as the current state
10: end if
11: Decrease the temperature according to the cooling schedule
12: end while
13: return current

2.3.1 Cooling Schedules

The cooling schedule is one of the most important parameters of Simulated Annealing, as
it determines how quickly the algorithm ”settles” into a solution. A few common cooling
schedules are:

• Exponential Cooling: The temperature decreases exponentially at each iteration:

Tn+1 = αTn, α ∈ (0, 1)

• Logarithmic Cooling: The temperature decreases according to a logarithmic
function:

Tn+1 =
T0

log(1 + n)

• Linear Cooling: The temperature decreases linearly:

Tn+1 = Tn −∆T

2.3.2 Stopping Criteria

Simulated Annealing can stop based on various criteria, including:

• Fixed Number of Iterations: The algorithm runs for a predefined number of
iterations.

• Temperature Threshold: The algorithm stops when the temperature falls below
a certain threshold.

• No Improvement: The algorithm stops when no significant improvement has
been made after a certain number of iterations.

Advantages:

• Can escape local optima due to the probabilistic acceptance of worse solutions.

• Effective for large and complex search spaces.
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Disadvantages:

• The cooling schedule needs to be carefully chosen.

• Computationally expensive for large problems.

• The algorithm may still get stuck in suboptimal solutions if the temperature decays
too quickly.

2.3.3 Applications of Simulated Annealing

Simulated Annealing has been successfully applied to a variety of optimization problems,
including:

• Traveling Salesman Problem (TSP)

• Job scheduling

• Circuit design

• Neural network training

2.4 Local Beam Search

Local Beam Search is a heuristic search algorithm that maintains multiple states (beams)
at once, exploring several paths simultaneously to avoid getting stuck in local maxima.

Key Concepts

• Beam Width: The number of states kept at each step.

• Selection: At each step, the best k states are selected from the neighbors of the
current states.

• Exploration: Explores multiple paths to improve the chances of finding a better
solution.

Algorithm

Algorithm 9 Local Beam Search

1: Initialize k random states
2: while not a goal state do
3: Generate neighbors of the current states
4: Select the best k states
5: end while
6: return the best state
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Advantages and Disadvantages

Advantages:

• Can explore multiple paths simultaneously, reducing the risk of getting stuck in
local maxima.

Disadvantages:

• Computationally expensive with large beam widths.

• Still prone to local maxima depending on the beam width and evaluation function.

Applications

Effective for large search spaces in problems like machine learning, combinatorial opti-
mization, and game-playing algorithms.

2.5 Genetic Algorithms

Genetic Algorithms (GAs) are a class of optimization algorithms inspired by the pro-
cess of natural selection in biology. They use mechanisms such as selection, crossover
(breeding), and mutation to evolve a population of candidate solutions toward an opti-
mal solution.

Key Concepts

• Population: A set of candidate solutions, often represented as chromosomes (or
strings).

• Selection: The process of choosing individuals from the population based on their
fitness (how good the solution is). This is similar to natural selection.

• Crossover (Breeding): The process of combining parts of two or more individuals
to create offspring. This simulates reproduction and introduces diversity into the
population.

• Mutation: Random changes in an individual’s genetic code to introduce variability
and prevent premature convergence.

• Fitness Function: A function used to evaluate how well a solution performs with
respect to the problem.

Genetic Algorithm Steps

The typical steps for a genetic algorithm are as follows:

1. Initialize the Population: Start with a randomly generated population of can-
didate solutions.

2. Selection: Evaluate the fitness of individuals and select the best solutions to re-
produce.

3. Crossover: Mate selected individuals to produce offspring, combining their genes.
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4. Mutation: Introduce small random changes to the offspring to maintain diversity.

5. Repeat: Repeat the selection, crossover, and mutation steps for multiple genera-
tions until a stopping condition is met (e.g., a maximum number of generations or
a satisfactory fitness level).

Example: Solving the Knapsack Problem

Consider a simple Knapsack Problem where the goal is to select items to maximize
the total value without exceeding a weight limit. Here’s how a genetic algorithm can be
applied:

• Each individual in the population represents a set of items, where each item is either
included or excluded from the knapsack. This is represented by a binary string,
e.g., 10101, where each bit corresponds to an item.

• The fitness function evaluates how valuable the selected items are, while ensuring
the total weight does not exceed the limit.

• In the crossover step, two parents (solutions) could exchange part of their binary
string to create offspring. For instance, the two parents 10101 and 11001 might
produce the offspring 11101.

• Mutation might randomly flip some bits, for example, 11101might mutate to 11001.

• The process repeats for several generations until an optimal or near-optimal solution
is found.

Advantages and Disadvantages

Advantages:

• Can search a large solution space efficiently.

• Suitable for problems with complex, non-linear, or poorly understood search spaces.

• Can escape local optima by using crossover and mutation to explore a wide solution
space.

Disadvantages:

• May require many generations to converge to a solution.

• The algorithm’s performance is highly dependent on the choice of parameters (e.g.,
population size, mutation rate).

• Can be computationally expensive for large problems.
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Applications of Genetic Algorithms

Genetic algorithms are widely used in optimization problems, such as:

• Combinatorial optimization (e.g., Traveling Salesman Problem, Knapsack Prob-
lem).

• Machine learning (e.g., neural network training, feature selection).

• Game strategy development.

• Engineering design problems.
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3 Game Theory

”Game theory is the study of mathematical models of conflict and coop-
eration between intelligent rational decision-makers.”

– Roger B. Myerson
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3.1 Minimax Algorithm

The Minimax Algorithm is used for decision making in two-player games. It operates
by building a game tree where each node represents a possible game state, and the edges
represent the moves between these states. The algorithm alternates between the two
players’ turns (maximizing and minimizing players), with each player trying to maximize
their own chances of winning while minimizing the opponent’s chances.

Key Concepts

• Maximizing Player: The player trying to maximize their score (typically the AI).

• Minimizing Player: The opponent trying to minimize the AI’s score.

• Game Tree: A tree representation of the possible moves in the game, where leaves
represent final game outcomes (win, lose, draw).

• Depth of the Tree: The number of levels in the game tree that corresponds to
how many moves ahead the algorithm will evaluate.

Minimax Algorithm Steps

The algorithm works recursively to evaluate each node in the game tree. Starting from
the leaves (final game states), it propagates values up the tree, alternating between the
maximizing and minimizing players:

1. Generate Game Tree: Construct the game tree with possible moves and out-
comes.
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2. Evaluate Leaf Nodes: Assign values to the leaf nodes based on the game outcome
(e.g., win = +1, loss = -1, draw = 0).

3. Propagate Values Up the Tree:

• For maximizing player nodes, select the maximum value from child nodes.

• For minimizing player nodes, select the minimum value from child nodes.

4. Choose Optimal Move: Once the root node is evaluated, the best move is selected
by choosing the child node with the optimal value.
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3.2 Alpha-Beta Pruning Algorithm

The Alpha-Beta Pruning Algorithm is an optimization technique for the minimax
algorithm. It reduces the number of nodes that need to be evaluated by cutting off
branches that cannot affect the final decision.

Key Concepts

• Alpha (α): The best value the maximizing player can guarantee so far (initially
−∞).

• Beta (β): The best value the minimizing player can guarantee so far (initially
+∞).

• Pruning: Cutting off branches that will not influence the final decision.

Alpha-Beta Pruning Steps

The algorithm works similarly to minimax, but it maintains two values, α and β, that
track the best options for both players:

1. Initialize Values: Set α = −∞ and β = +∞.

2. Traverse the Game Tree: Perform a depth-first search.
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3. Apply the Rules:

• At a Max Node:

– Update α = max(α, current value).

– If α ≥ β, prune the remaining branches.

• At a Min Node:

– Update β = min(β, current value).

– If β ≤ α, prune the remaining branches.

4. Choose Optimal Move: After evaluating the root, choose the move leading to
the best outcome.

Why Use Alpha-Beta Pruning?

• Efficiency: Reduces the number of nodes explored.

• Optimality: The algorithm still finds the optimal move.

• Time Complexity: With perfect pruning, the time complexity is O(bd/2), where
b is the branching factor and d is the depth.

3.3 Evaluation Function

The Evaluation Function estimates the desirability of a game state when the search
cannot proceed to terminal states. It assigns a numerical score based on the
current board configuration.

• At the leaf nodes, the game state is evaluated using a heuristic or utility function.

• Positive values indicate an advantage for the maximizing player, while nega-
tive values favor the minimizing player.

• The evaluation function considers important factors such as:

– Material Advantage: Difference in key game pieces.

– Positional Strength: Control of important areas in the game environment.

– Mobility and Potential: Ability to make future moves effectively.

3.4 Quiescence Search

Quiescence Search is an extension of the minimax search that addresses the horizon
effect by exploring unstable positions beyond the standard search depth. It helps avoid
evaluating volatile game states prematurely.

Why Use Quiescence Search?

In many games, certain positions are unstable due to tactical possibilities like captures or
checks in chess. Evaluating such positions can lead to incorrect conclusions if the search
is abruptly stopped. Quiescence search extends the search depth until a stable, ”quiet”
position is reached.
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How It Works

1. After reaching a leaf node in the regular search, check if the position is quiet
(stable).

2. If the position is unstable:

• Expand the game tree by considering only certain tactical moves (e.g., cap-
tures, checks).

• Continue searching until a quiet position is reached.

3. Evaluate the resulting quiet position using the evaluation function.

Key Considerations

• Selective Moves: Only tactical moves are considered to limit the search space.

• Search Depth: Quiescence search is not unlimited—it uses a reasonable depth to
prevent infinite search loops.

• Performance Trade-Off: While improving accuracy, quiescence search can in-
crease computation time if not properly managed.

3.5 Horizon Effect

The Horizon Effect occurs when a game-playing algorithm cannot see far enough ahead
due to a limited search depth. As a result, the algorithm may miss critical future conse-
quences, leading to suboptimal decisions.

Description

The search process is constrained by a fixed depth, creating a ”horizon” beyond which
the algorithm cannot evaluate moves. This limitation can cause the algorithm to delay
inevitable losses or fail to anticipate long-term advantages.

Example: Chess

In chess, the horizon effect can occur when:

• A critical piece is at risk of being captured in a few moves, but the search depth is
too shallow to detect this threat.

• The algorithm delays the capture by making irrelevant moves, falsely believing it
has avoided the loss.

Impact and Mitigation

• Impact: The algorithm may:

– Make short-sighted moves.

– Miss winning tactics or fail to avoid losing positions.
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• Mitigation Techniques:

– Quiescence Search: Extend the search beyond unstable nodes to find more
accurate evaluations.

– Iterative Deepening: Increase search depth gradually, using earlier results
to guide deeper searches.

– Selective Search: Focus the search on promising or dangerous moves to
reduce computational load.
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4 Constraint Satisfaction Problems

”A constraint satisfaction problem is not about finding ‘a’ solution; it’s
about finding ‘the’ solution that fits within a defined space of possibili-
ties.”

– Edward Tsang
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Constraint Satisfaction Problems (CSPs) are mathematical problems defined by
a set of variables, domains, and constraints. The goal is to assign values to variables
while satisfying all constraints.

4.1 Components of a CSP

• Variables: The set of elements that need to be assigned values (e.g.,X1, X2, . . . , Xn).

• Domains: The set of possible values each variable can take (e.g., D1, D2, . . . , Dn).

• Constraints: Rules or relationships between variables that must be satisfied (e.g.,
X1 ̸= X2).

4.2 Types of CSPs

• Discrete CSPs: Finite domains (e.g., Sudoku, scheduling).

• Continuous CSPs: Infinite domains (e.g., scheduling with continuous time).

• Binary CSPs: Constraints involve pairs of variables.

• Higher-order CSPs: Constraints involve more than two variables.
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4.3 Solving CSPs

Solving a CSP involves finding an assignment of values to variables that satisfies all
constraints. This can be done using several methods:

Backtracking Search

• A depth-first search that assigns values to variables one at a time.

• If a constraint is violated, the algorithm backtracks to try a different assignment.

Constraint Propagation

Constraint propagation involves enforcing constraints locally to reduce the search space
by eliminating inconsistent values. Common types of consistencies include:

• Node Consistency:

– A variable Xi is node consistent if all values in its domain Di satisfy its
unary constraints C(Xi).

– Mathematical Definition:

∀x ∈ Di, C(Xi = x) is true

• Arc Consistency (AC-3):

– A variable Xi is arc consistent with another variable Xj if every value in Di

has a corresponding value in Dj that satisfies the binary constraint C(Xi, Xj).

– Mathematical Definition:

∀x ∈ Di, ∃y ∈ Dj such that C(Xi = x,Xj = y) is true

– AC-3 is an algorithm that iteratively enforces arc consistency by examining
each arc (Xi, Xj) and removing inconsistent values from Di.

• Path Consistency:

– A pair of variables (Xi, Xj) is path consistent concerning a third variable
Xk if, for every assignment of Xi and Xj, there exists a consistent value of Xk

satisfying all relevant constraints.

– Mathematical Definition:

∀(xi, xj) ∈ Di×Dj, ∃xk ∈ Dk such that C(Xi = xi, Xk = xk)∧C(Xj = xj, Xk = xk)

– Path consistency extends arc consistency by considering indirect relationships
between variables.

Heuristics for CSPs

• Minimum Remaining Values (MRV): Choose the variable with the fewest legal
values.

• Degree Heuristic: Choose the variable involved in the most constraints.

• Least Constraining Value: Choose the value that rules out the fewest choices
for other variables.
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5 Probability: Understanding Uncertainty

5.1 Random Variables

A random variable is a variable whose possible values depend on the outcome of a
random process.

1. Discrete Random Variables: Take on a finite or countable set of values (e.g.,
the roll of a die).

X = {1, 2, 3, 4, 5, 6}, P (X = x) =
1

6
, ∀x ∈ X

2. Continuous Random Variables: Take on values in a continuous range (e.g., the
height of individuals).

P (X = x) = 0, but P (a ≤ X ≤ b) =

∫ b

a

fX(x) dx

5.2 Propositions and Syntax

Propositions are statements about events that can be true or false.

• P (A): Probability of event A occurring.

• P (A ∩B): Probability that both A and B occur.

• P (A ∪B): Probability that A or B (or both) occur.

• P (Ac): Probability that A does not occur (complement of A).

• Prior Distribution: A prior distribution represents the probability of an event
or parameter before observing any data or evidence. It reflects initial beliefs about
the event based on previous knowledge or assumptions.

P (θ) where θ is the unknown parameter

In Bayesian inference, the prior is updated with new evidence using Bayes’ theorem:

P (θ|data) = P (data|θ)P (θ)

P (data)

• Posterior Distribution: The posterior distribution represents the updated
probability of an event or parameter after observing new data or evidence. It
combines the prior distribution with the likelihood of the observed data:

5.3 Prior Probability

Prior probability represents the initial belief about an event before observing any
evidence. Example: The probability that a randomly chosen student owns a pet:

P (Pet Owner) = 0.6
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5.4 Gaussian Distribution (Normal Distribution):

For continuous random variables, probabilities are defined over intervals using a proba-
bility density function (PDF). The Gaussian density function is defined as:

f(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
Where:

• µ: Mean (center of the distribution)

• σ2: Variance (spread of the distribution)

Example: Heights of people in a population often follow a Gaussian distribution.

5.5 Conditional Probability

The probability of event A given that event B has occurred is defined as:

P (A | B) =
P (A ∩B)

P (B)
, P (B) > 0

Example: Probability of liking tea (T ) given it’s a cold day (C):

P (T | C)

5.6 Inference by Enumeration

To calculate probabilities over multiple variables:

P (A) =
∑
B

P (A ∩B)

Example: The probability of passing a test P (Pass) might depend on studying (S) or
not:

P (Pass) = P (Pass | S)P (S) + P (Pass | Sc)P (Sc)

5.7 Independence

Two events A and B are independent if:

P (A ∩B) = P (A)P (B)

Example: Flipping two coins. The outcome of one does not affect the other.

5.8 Conditional Independence

Two events A and B are conditionally independent given C if:

P (A ∩B | C) = P (A | C)P (B | C)

Example: Whether it rains today (R) and whether you take your umbrella (U) might
be independent given that you check the weather forecast (F ).
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5.9 Normalization

Probabilities must sum to 1:∑
i

P (X = xi) = 1, for discrete variables.

For continuous variables: ∫ ∞

−∞
fX(x) dx = 1
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6 Bayes Nets

”Bayesian networks provide a framework for reasoning under uncer-
tainty by combining probabilistic inference with a graphical representa-
tion of dependencies.”

– Daphne Koller

6.1 Bayes Rule

Bayes Rule is a fundamental formula in probability that allows us to update our beliefs
about an event based on new evidence. It is given by:

P (a | b) = P (b | a) · P (a)

P (b)

Where:

• P (a | b): Posterior probability of a given b (updated belief after observing evidence
b).

• P (b | a): Likelihood of evidence b occurring if a is true.

• P (a): Prior probability of a (belief about a before observing evidence).

• P (b): Marginal probability of b (total probability of evidence b across all possible
causes).

6.2 Example: Alien Detection

Imagine you are the captain of the spaceship Intergalactic Voyager, exploring deep space.
Your ship’s sensors are designed to detect alien ships in nearby regions of the galaxy.
However, the sensors are imperfect.

• A: Event that there is an alien ship nearby.

• S: Event that the sensor detects alien signals.

Your mission is to calculate the probability of aliens being nearby P (A | S) given that
the sensors have detected a signal.

Known Information:

• P (A) = 0.02: The prior probability of an alien ship being nearby (aliens are rare!).

• P (S | A) = 0.9: The likelihood that the sensor detects signals when aliens are
present.

• P (S | Ac) = 0.1: The likelihood that the sensor detects signals even when there are
no aliens (false positive rate).

• P (Ac) = 0.98: The prior probability of no aliens nearby.
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Step 1: Total Probability of Sensor Detection

We first calculate the total probability of the sensor detecting a signal, P (S):

P (S) = P (S | A) · P (A) + P (S | Ac) · P (Ac)

Substitute the values:

P (S) = (0.9 · 0.02) + (0.1 · 0.98) = 0.018 + 0.098 = 0.116

Step 2: Posterior Probability of Aliens Nearby

Now, we use Bayes Rule to calculate P (A | S):

P (A | S) = P (S | A) · P (A)

P (S)

Substitute the values:

P (A | S) = 0.9 · 0.02
0.116

≈ 0.155

Even with a positive signal, there is only a 15.5% chance that an alien ship is nearby
due to the rarity of alien encounters.

6.3 Bayesian Network: Galactic Spy Network

You decide to build a Bayesian Network to better understand the relationships between
variables.

Scenario: Alien Presence, Sensor Signal, and Defensive Readiness
Your network includes:

• A: Presence of alien ships.

• S: Sensor signal detection.

• D: Defensive readiness (activated if signals suggest aliens).

Graph Structure:
A→ S → D

The Conditional Probability Tables (CPTs) might look like this:

P (A) =
Alien Presence (A) P (A)

Yes 0.02
No 0.98

P (S | A) =
A S = Yes S = No
Yes 0.9 0.1
No 0.1 0.9

P (D | S) =
S D = Ready D = Not Ready
Yes 0.8 0.2
No 0.1 0.9
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6.4 Reasoning in the Network

Given a positive signal (S = Yes), calculate the probability of being ready for defense
P (D = Ready | S = Yes):

P (D = Ready | S = Yes) = 0.8

Bayesian networks like this help the Intergalactic Voyager crew make informed decisions
under uncertainty, improving their survival in hostile galaxies!

6.5 Bayesian Network

A Bayesian Network is a probabilistic graphical model that represents a set of vari-
ables and their conditional dependencies using a directed acyclic graph (DAG).

• Nodes: Represent random variables.

• Edges: Directed edges represent direct dependencies.

6.6 Joint Distribution

Definition: The probability of two or more random variables happening at the same
time.

A

B C D

E F

P (R, S,W ) = P (R) · P (S | R) · P (W | R, S)

Example:

• A = 1, B = 2, C = 2, D = 2, E = 2, F = 4

6.7 D-Separation

Definition: A path is blocked if information cannot flow between two variables,
meaning they are independent. A path is open if information can flow, meaning they
are dependent.

6.8 Enumeration Methods

Bayesian Network inference can be done through two main enumeration techniques:
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6.8.1 Full Enumeration:

• Computes exact probabilities by summing over all possible values of hidden (unob-
served) variables.

• Guarantees precise results but becomes computationally expensive as the net-
work size increases due to the exponential number of states.

• Mathematical Formulation: Given a query P (X|e), where X is the query vari-
able and e is the evidence, the full enumeration process computes:

P (X|e) = P (X, e)

P (e)
=

∑
Y P (X, Y, e)∑

X

∑
Y P (X, Y, e)

where Y represents all hidden variables.

• Example: In a weather prediction network, summing over all possible weather
conditions to compute the probability of rain given cloudy skies.

• Best For: Small networks or scenarios where exact results are critical.

6.8.2 Optimized Enumeration (Variable Elimination):

• Reduces computation by eliminating hidden variables one at a time, combining and
simplifying factors.

• Exploits conditional independencies in the network to avoid redundant calcu-
lations.

• Mathematical Process:

P (X|e) = 1

Z

∏
f∈Factors

f

where factors are created and reduced through marginalization:

f ′(Y ) =
∑
Z

f(Y, Z)

• Example: In a disease diagnosis network, removing intermediate variables like
symptoms by combining factors to focus on the relationship between evidence and
the disease.

• Best For: Larger networks where computational efficiency is important.

6.9 Sampling Techniques

When exact inference in Bayesian Networks becomes computationally infeasible, sampling-
based approaches offer approximate solutions by generating and evaluating samples.
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Overview of Sampling Techniques

• Rejection Sampling:

– Generates samples from the prior distribution P (X1, X2, . . . , Xn).

– Rejects samples that are inconsistent with the observed evidence e.

– Estimated Probability:

P (X|e) ≈ Count of samples consistent with e and X

Count of samples consistent with e

– Advantages: Simple to implement for small networks.

– Disadvantages: Inefficient for large networks or when evidence is rare, lead-
ing to many rejected samples.

• Likelihood Weighting:

– Samples only non-evidence variables while fixing evidence variables.

– Assigns a weight w to each sample based on the likelihood of the evidence
given the sampled values.

– Weight Calculation:

w =
∏
Ei∈e

P (Ei|parents(Ei))

where Ei are evidence variables.

– Estimated Probability:

P (X|e) ≈
∑

samples w · I(X)∑
samples w

where I(X) is an indicator function that is 1 if X is true in the sample and 0
otherwise.

– Advantages: More efficient than rejection sampling for networks with rare
evidence.

– Disadvantages: Accuracy degrades if evidence variables strongly constrain
the network.

• Gibbs Sampling:

– Starts with an initial assignment of all variables.

– Iteratively samples each variable conditioned on the current values of all other
variables:

P (Xi|X−i, e) ∝ P (Xi|parents(Xi))
∏

Yj∈children(Xi)

P (Yj|parents(Yj))

where X−i denotes all variables except Xi.

– After a burn-in period, the samples approximate the target distribution.

– Advantages: Effective for complex networks with many variables and ob-
served evidence.

– Disadvantages: Convergence can be slow when variables are highly interde-
pendent.
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7 Machine Learning

”Machine learning is the science of getting computers to act without
being explicitly programmed.”

– Tom M. Mitchell

7.1 K-Nearest Neighbors (KNN)

Definition

K-Nearest Neighbors is an intuitive machine learning method used for both classification
and regression. It works by looking at the closest points around a new data point and
making decisions based on them.

Key Characteristics

• Makes no assumptions about the data distribution.

• Does not build a model during training but stores the training dataset for later
computations.

• Uses specific instances from the training data to make predictions for new data
points.

How it Works

Given a query point (the point for which we want to predict the class/label):

1. Calculate the distance between the query point and all points in the training dataset.

2. Select the K nearest points (neighbors) based on the distance metric.

3. For classification, assign the class with the majority vote among the neighbors. For
regression, average the values of the nearest neighbors.

Distance Metrics

• Euclidean Distance:

d(x1, x2) =
√∑

(x1 − x2)2

Example: Euclidean distance is the straight-line distance between two points in a
Cartesian plane.
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• Manhattan Distance:
d(x1, x2) =

∑
|x1 − x2|

Example: Manhattan distance measures the distance along grid-like paths (like city
blocks).
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• Minkowski Distance:

d(x1, x2) =
(∑

|x1 − x2|p
)1/p

Example: A generalization of Euclidean and Manhattan distances, controlled by
parameter p. For p = 1, it becomes Manhattan distance; for p = 2, it becomes
Euclidean distance.

(Graph omitted; similar to Euclidean and Manhattan distance, depending on p.)

• Cosine Similarity:

Cosine Similarity =
A ·B
∥A∥∥B∥
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Example: Cosine similarity measures the angle between two vectors, focusing on
their direction rather than magnitude.
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Choosing K

• A small K (e.g., 1) makes KNN sensitive to noise, leading to overfitting.

• A large K (e.g., too large) can cause underfitting, making the algorithm less sensi-
tive to local structure.

• Common Practice: Try different values of K and choose the one that performs
best using cross-validation.

Underfitting, Overfitting, and Cross-Validation

• Underfitting: Occurs when the model is too simple to capture patterns in the
data (e.g., very large K).

• Overfitting: Happens when the model is too specific to the training data (e.g.,
very small K).

• Cross-Validation: Helps select the optimal value of K by splitting the training
data into subsets and evaluating model performance.

K-NN Advantages

• Simplicity: Easy to understand and implement.

• No Training Phase: Useful for scenarios where the training set updates fre-
quently.

• Flexibility: Applicable to both classification and regression tasks.
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7.2 The Gaussian Distribution
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• Mean (µ): Represents the expected value or average of the data points.

• Standard Deviation (σ): Measures the spread of the data around the mean.

• Symmetry: The Gaussian distribution is symmetric, often assumed in linear mod-
els.

• 68-95-99.7 Rule: Describes the proportion of data within one, two, and three
standard deviations from the mean.

7.3 Central Limit Theorem (CLT)

Definition: The CLT states that, regardless of the original distribution, the sampling
distribution of the sample mean will approach a normal distribution as the sample size
becomes large.

• Model Assumptions: Many machine learning models assume normally distributed
errors or residuals.

• Improved Estimation: The sample mean approximates the population mean for
large samples.

• Standardized Data: CLT supports normalizing data for algorithms that perform
better with Gaussian inputs.

7.4 Decision Boundaries

Definition: A decision boundary is a surface that separates different classes in a classi-
fication problem.

• Linear: Straight lines or planes, e.g., logistic regression.

• Non-linear: Curved or complex shapes, e.g., decision trees or neural networks.
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Linear Decision Boundary

A linear decision boundary separates classes with a straight line or plane.
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7.5 Non-linear Decision Boundary

A non-linear decision boundary separates classes with a curve or complex shape.
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7.6 Bayes Classifier

P (Ck|x) =
P (x|Ck) · P (Ck)

P (x)

• Posterior Probability (P (Ck|x)): Probability of class Ck given data x.

• Likelihood (P (x|Ck)): Probability of data x given class Ck.
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• Prior (P (Ck)): Probability of class Ck without considering data.

• Marginal Likelihood (P (x)): Probability of the data x across all classes.

7.7 Maximum Likelihood Estimation (MLE)

θ̂ML = argmax
θ

L(θ|X) = argmax
θ

P (X|θ)

• θ̂ML: The parameter that maximizes the likelihood function.

• L(θ|X): Likelihood of the data given parameter θ.

• P (X|θ): Probability of observing the data given θ.

7.8 When is Maximum Likelihood Estimation Used?

MLE is widely used in statistical modeling and machine learning for parameter estimation.
It is particularly effective when:

• The form of the probability distribution is known (e.g., Gaussian, Poisson, etc.).

• The goal is to find the parameter values that make the observed data most probable.

• Data is assumed to be generated from an underlying probabilistic model.

7.9 Applications of MLE

• Linear Regression: Estimating coefficients when assuming normally distributed
errors.

• Logistic Regression: Determining weights by maximizing the likelihood of binary
classifications.

• Gaussian Mixture Models: Estimating the parameters of component distribu-
tions in a mixture model.

• Hidden Markov Models: Learning transition and emission probabilities using
observed data.

• Neural Networks: Optimizing weights via maximum likelihood principles (often
approximated using stochastic gradient descent).

7.10 Random Forests

Random Forest is an ensemble learning technique that builds multiple decision trees
during training and combines their outputs for prediction. It reduces overfitting and
improves accuracy.
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7.11 Key Features

• Bootstrap Aggregation (Bagging): Each tree is trained on a random subset of
the data (with replacement).

• Random Feature Selection: At each split, only a random subset of features is
considered.

• Final Prediction:

– Classification: The final output is themode of the predictions from all trees:

ŷ = mode(h1(x), h2(x), . . . , hT (x))

– Regression: The final output is the mean of the predictions from all trees:

ŷ =
1

T

T∑
t=1

ht(x)

where T is the total number of trees.

• OOB (Out-of-Bag) Error: The error is estimated using data not included in the
bootstrap sample.

7.12 Advantages

• Reduces overfitting compared to a single decision tree.

• Works well for both classification and regression tasks.

• Robust to noise and missing data.

7.13 Equations for Random Forest

• Gini Impurity: Used to evaluate splits in decision trees:

Gini = 1−
C∑
i=1

p2i

where pi is the proportion of instances in class i, and C is the number of classes.

• Weighted Gini for Splits:

Ginisplit =
nleft

ntotal

Ginileft +
nright

ntotal

Giniright

• Entropy (for information gain):

Entropy = −
C∑
i=1

pi log2(pi)
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7.14 Neural Networks

A Neural Network is a computational model inspired by the human brain. It consists of
layers of interconnected nodes (neurons) that process input data and produce predictions.

Perceptron

Definition: The Perceptron is the simplest type of neural network, used for binary
classification tasks.

• Single-Layer Perceptron:

– Performs a weighted sum of inputs and applies an activation function (e.g.,
step function).

– Can only classify linearly separable data.

• Multilayer Perceptron (MLP):

– Adds hidden layers to learn more complex patterns.

– Uses non-linear activation functions (e.g., ReLU, sigmoid, tanh).

– Capable of solving non-linearly separable problems.

7.15 Backpropagation

Definition: Backpropagation is the algorithm used to train neural networks by mini-
mizing the error between predicted and actual values.

• Steps:

1. Perform forward propagation to compute the output.

2. Calculate the loss (e.g., mean squared error).

3. Propagate the error backward to adjust weights using the gradient of the loss
function.

• Optimization: Common methods include gradient descent, stochastic gradient
descent (SGD), and Adam optimizer.

7.16 Equations

• Weighted Sum:

z =
n∑

i=1

wixi + b

where wi are weights, xi are inputs, and b is the bias.

• Activation Function:
a = f(z)

Common choices for f(z):

– Sigmoid: σ(z) = 1
1+e−z
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– ReLU: f(z) = max(0, z)

– Tanh: tanh(z) = ez−e−z

ez+e−z

• Loss Function:

L =
1

N

N∑
i=1

(yi − ŷi)
2

where yi is the actual value and ŷi is the predicted value.

• Weight Update Rule:

wi ← wi − η
∂L
∂wi

where η is the learning rate.

7.17 Clustering

Clustering is an unsupervised learning technique used to group data points into clusters
based on their similarity.

7.18 K-means Clustering

• Iteratively assigns data to clusters and updates centroids.

• Requires specifying the number of clusters, k, beforehand.

• Converges when cluster assignments no longer change or centroids stabilize.

• Sensitive to initial centroid placement and may converge to a local optimum.

• Suitable for spherical clusters with similar sizes.

7.19 Expectation-Maximization (EM)

• Soft clustering by estimating probabilities and maximizing likelihood.

• Alternates between the Expectation step (E-step), which calculates the probability
of data points belonging to each cluster, and the Maximization step (M-step), which
updates cluster parameters to maximize the likelihood.

• Suitable for clustering data that follows a probabilistic distribution, such as Gaus-
sian Mixture Models (GMMs).

• Provides flexibility in cluster shapes compared to K-means.

• Computationally more intensive than K-means.
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8 Pattern Recognition Through Time

”Pattern recognition is the ability to detect order in chaos by finding
structures that persist through time.”

– Christopher Bishop

Warping Time

Time warping is a powerful concept in time-series analysis and pattern recognition, where
temporal misalignments between sequences are corrected to enable meaningful compar-
isons.

Temporal Patterns

Temporal patterns are sequences of events or data points occurring over time, exhibiting
regularity or structure. Examples include:

• Variations in pitch, rhythm, heartbeats, stock prices, walking patterns, etc.

• Complex interactions such as sensor data from multiple systems or cyclic economic
indicators.

Temporal patterns often contain variations in speed, amplitude, or noise, making direct
comparisons challenging.

8.1 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is a technique for aligning two temporal sequences by
“stretching” or “compressing” time to minimize their differences. It finds the optimal
alignment between two sequences by constructing a warping path in a cost matrix.

Applications of DTW

• Speech Recognition: Aligning spoken words for comparison despite variations in
speaking speed.

• Time-Series Analysis: Aligning stock market trends or sensor data.

DTW Algorithm Steps

1. Cost Matrix Construction: Compute the pairwise distance between elements of
two sequences,

X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , ym],

to form a cost matrix D, where

D(i, j) = ∥xi − yj∥.
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2. Dynamic Programming Recurrence: Compute the cumulative cost C(i, j) for
aligning xi with yj:

C(i, j) = D(i, j) + min


C(i− 1, j),

C(i, j − 1),

C(i− 1, j − 1)

where C(0, 0) = 0, and boundary conditions are handled appropriately.

3. Warping Path Extraction: Backtrack from C(n,m) to C(1, 1) to find the optimal
warping path,

W = [(i1, j1), (i2, j2), . . . , (ik, jk)],

which minimizes the total alignment cost.

Visualizing DTW Alignment A cost matrix D can be visualized with the optimal
warping path W as a line traversing from (1, 1) to (n,m), showing how the sequences
align.

Example Alignment: Cost Matrix with Optimal Warping Path W



C(1, 1) C(1, 2) C(1, 3) · · · C(1,m)

C(2, 1) C(2, 2) C(2, 3) · · · C(2,m)

C(3, 1) C(3, 2) C(3, 3) · · · C(3,m)
...

...
...

. . .
...

C(n, 1) C(n, 2) C(n, 3) · · · C(n,m)


W = {(1, 1), (2, 2), (3, 3), . . . , (n,m)}

Key: Cells highlighted in gray represent the optimal warping path.

This approach ensures robust comparison, even under non-linear temporal distortions,
enhancing the utility of time-series analysis.

8.2 Sakoe-Chiba Bounds

Sakoe-Chiba bounds constrain the warping path in Dynamic Time Warping (DTW) to a
fixed-width band around the diagonal of the cost matrix. This serves two main purposes:

• Reduce Computational Cost: By limiting the number of cells considered during
alignment.

• Prevent Unrealistic Alignments: By restricting excessive stretching or com-
pressing of the sequences.
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Concept

The Sakoe-Chiba band defines a fixed-width region of the DTW cost matrix within which
the warping path is allowed to traverse. For a band of width w, the warping path is
constrained to satisfy:

|i− j| ≤ w, ∀(i, j) ∈ W ,

whereW represents the warping path, and i and j are indices of the two sequences being
aligned.

Cost Matrix with Sakoe-Chiba Band:



C(1, 1) C(1, 2) · · · · ·

C(2, 1) C(2, 2) C(2, 3) · · · ·

· C(3, 2) C(3, 3) C(3, 4) · · ·
... · C(4, 3) C(4, 4) C(4, 5)

· · · ... · · · C(n− 1,m− 2) C(n,m)


Cells outside the band (unshaded) are ignored during the computation, drastically

reducing the number of operations.

Advantages

• Efficiency: By constraining the warping path, the Sakoe-Chiba band reduces the
computational complexity from O(n×m) to approximately O(w × n), where w is
the width of the band.

• Improved Accuracy: Restricts excessive warping that might lead to unnatural
alignments, ensuring that only meaningful temporal distortions are considered.

Width Parameter

The width of the Sakoe-Chiba band, w, controls the trade-off between alignment flexibility
and computational efficiency:

• Small w: Faster computation but less flexibility, potentially missing valid align-
ments.

• Large w: More flexibility but increased computation, approaching unconstrained
DTW.

The choice of w depends on the expected variability in the sequences and the application
context.

47



Visualization

A visualization of the warping path constrained by the Sakoe-Chiba band within the cost
matrix is shown below:

Warping Path with Sakoe-Chiba Band

y1 y2 y3 y4

x1 C(1, 1) C(1, 2) · ·

x2 C(2, 1) C(2, 2) C(2, 3) ·

x3 · C(3, 2) C(3, 3) C(3, 4)

x4 · · C(4, 3) C(4, 4)

Cells highlighted in red indicate the allowable region of the warping path constrained
by the band width w.

Equation Summary

For two sequences X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , ym], with Sakoe-Chiba
bounds:

C(i, j) =


D(i, j) + min


C(i− 1, j)

C(i, j − 1)

C(i− 1, j − 1)

, if |i− j| ≤ w,

∞, otherwise.

This ensures computations are restricted to the defined band.

8.3 Viterbi Algorithm

Purpose

Finds the most likely sequence of hidden states given observed events in HMMs.

Approach

• Uses dynamic programming to maximize the probability of reaching each state in
sequence.

• Visualized using a Trellis Diagram.

Formula

δt(j) = max
i

[δt−1(i)× aij]× bj(ot)

Where:

• δt(j): Maximum probability of any path reaching state j at time t given observations
up to t.
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• aij: Transition probability from state i to j.

• bj(ot): Emission probability of observing ot in state j.

Matrix Representations

Transition Matrix (A):

A =

a11 a12

a21 a22


1. a11: Probability of staying in S1 (Sunny to Sunny).

2. a12: Probability of transitioning from S1 to S2 (Sunny to Rainy).

3. a21: Probability of transitioning from S2 to S1 (Rainy to Sunny).

4. a22: Probability of staying in S2 (Rainy to Rainy).

Emission Matrix (B):

B =

b1(O1) b1(O2)

b2(O1) b2(O2)


1. b1(O1): Probability of observing O1 (Happy) from S1 (Sunny).

2. b1(O2): Probability of observing O2 (Sad) from S1 (Sunny).

3. b2(O1): Probability of observing O1 (Happy) from S2 (Rainy).

4. b2(O2): Probability of observing O2 (Sad) from S2 (Rainy).

Steps of the Algorithm

1. Initialization: Compute the initial probabilities for each state:

δ1(j) = πj × bj(o1)

where πj is the initial probability of state j, and bj(o1) is the probability of the first
observation in state j.

2. Recursion: For each subsequent observation t, compute:

δt(j) = max
i

[δt−1(i)× aij]× bj(ot)

3. Termination: Find the most probable final state:

Pmax = max
j

δT (j)

4. Backtracking: Trace back through the stored states to reconstruct the most prob-
able path.
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Trellis Diagram
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8.4 Baum-Welch Algorithm

Purpose

Trains Hidden Markov Models (HMMs) by estimating the parameters of the model (tran-
sition probabilities A, emission probabilities B, and initial state probabilities π) to max-
imize the likelihood of observed data.

Type

An example of the Expectation-Maximization (EM) algorithm, which iteratively
refines parameters to maximize the likelihood of observed data.

Steps

1. E-step (Expectation): Calculates the expected probabilities of being in a given
hidden state at a particular time, given the current model parameters and observa-
tions.

• Forward probability (αt(i)): Probability of reaching state i at time t and
observing the sequence up to t:

αt(i) =
N∑
j=1

αt−1(j) · aji · bi(ot)

• Backward probability (βt(i)): Probability of observing the sequence from
time t+ 1 to the end, given the state at time t:

βt(i) =
N∑
j=1

aij · bj(ot+1) · βt+1(j)

• State occupancy probability (γt(i)): Probability of being in state i at time
t:

γt(i) =
αt(i) · βt(i)∑N

k=1 αt(k) · βt(k)
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• State transition probability (ξt(i, j)): Probability of transitioning from
state i to state j at time t:

ξt(i, j) =
αt(i) · aij · bj(ot+1) · βt+1(j)∑N

k=1

∑N
l=1 αt(k) · akl · bl(ot+1) · βt+1(l)

2. M-step (Maximization): Updates the model parameters using the probabilities
computed in the E-step:

• Transition probabilities:

aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

• Emission probabilities:

bj(ok) =

∑T
t=1 γt(j) · ⊮(ot = ok)∑T

t=1 γt(j)

where ⊮(ot = ok) is an indicator function that is 1 if ot = ok, and 0 otherwise.

• Initial state probabilities:
πi = γ1(i)

3. Iteration: Repeat the E and M steps until the parameters converge (i.e., the
change in the log-likelihood of the observations stabilizes).

Applications

Widely used in:

• Speech recognition: Training acoustic models to predict phonemes from audio.

• Bioinformatics: Inferring gene structures or protein sequences.

• Natural language processing: Part-of-speech tagging, machine translation, etc.

8.5 Stochastic Beam Search

Purpose

Generates diverse sequences in NLP tasks by introducing randomness into beam search.

Mechanism

• Expands a fixed number of paths by stochastically sampling from top candidates
at each step.

• Balances probability with randomness to retain diverse paths.
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Equations

In stochastic beam search:

• At each step t, compute the probabilities of possible next tokens:

P (yt|y<t, x) =
exp(s(yt|y<t, x)/τ)∑

y′∈Yt
exp(s(y′|y<t, x)/τ)

where:

– s(yt|y<t, x): Score of token yt given context y<t and input x.

– τ : Temperature parameter to control randomness.

– Yt: Set of possible tokens at time t.

• Stochastically sample k candidates based on probabilities P (yt|y<t, x).

Pros and Cons

• Pros:

– Increases output variety, useful for tasks like machine translation and text
generation.

– Produces diverse yet coherent outputs by balancing probability and random-
ness.

• Cons:

– May introduce suboptimal paths if randomness dominates.

– Requires careful tuning of the temperature τ and beam size k.
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9 Hidden Markov Models (HMMs)

”Hidden Markov Models provide a simple and effective framework for
modeling time-series data where the system being modeled is assumed
to follow a Markov process with hidden states.”

– Lawrence R. Rabiner

9.1 Markov Chain

A model for sequences where each event depends only on the previous one.
Key Components:

• States: Possible situations (e.g., weather: cloudy, rainy, sunny).

• Transitions: Probabilities of moving from one state to another.

• Transition Matrix: Table of transition probabilities.

9.2 Definitions

A Hidden Markov Model (HMM) is a statistical model where the system is assumed
to follow a Markov process with hidden (unobservable) states that produce observable
outputs. It is defined by:

• A set of hidden states {S1, S2, . . . , SN}.

• A set of observations {O1, O2, . . . , OM} produced by the hidden states.

• A transition probability matrix A = [aij], where aij is the probability of tran-
sitioning from state Si to Sj.

• An emission probability matrix B = [bj(Ok)], where bj(Ok) is the probability
of observing Ok given the system is in state Sj.

• An initial state distribution π = [πi], where πi is the probability of starting in
state Si.

Example: Consider a weather system:

• Hidden states: Weather conditions (e.g., Sunny, Rainy).

• Observations: A friend’s mood (e.g., Happy, Sad).

• Goal: Infer the hidden sequence of weather states based on the sequence of observed
moods.

Inference Tasks in HMMs:

1. Likelihood Estimation: Calculate the probability of a sequence of observations.

2. Decoding: Determine the most likely sequence of hidden states (e.g., Viterbi al-
gorithm).

3. Learning: Estimate the model parameters (A,B, π) given a set of observations.
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9.3 HMM Diagram

Below is a visualization of a Hidden Markov Model using a weather example:

HMM Diagram: Hidden States and Observations Below is a visualization of a
Hidden Markov Model using a weather example:

Sunny (S1) Rainy (S2)

Happy (O1) Sad (O2)

a11
a12

a22

a21

b1(O1)
b1(O2) b2(O1)

b2(O2)

Explanation of the Diagram:

1. hidden states (Sunny, Rainy) are shown as ellipses.

2. observations (Happy, Sad) are shown as rectangles.

3. Transition probabilities aij define the likelihood of moving between hidden
states.

4. Emission probabilities bj(Ok) define the likelihood of observing a specific obser-
vation from a given state.

Mathematical Representation: The joint probability of a sequence of observations
O = [O1, O2, . . . , OT ] and hidden states S = [S1, S2, . . . , ST ] is given by:

P (O, S) = πS1

T−1∏
t=1

aStSt+1

T∏
t=1

bSt(Ot),

where:

1. πS1 is the initial probability of starting in state S1.

2. aStSt+1 is the transition probability from state St to St+1.

3. bSt(Ot) is the emission probability of observing Ot from state St.
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10 Logic and Planning

”Intelligence is the ability to solve problems using knowledge, reasoning,
and planning.”

– Stuart Russell Peter Norvig

10.1 Propositional Logic

Propositional logic is a formal system in logic used to represent statements and their
relationships using propositions and logical connectives. Below are the key components
and rules of propositional logic.

10.2 Key Components

• Proposition: a statement that is either true (T ) or false (F ). Example: “It is
raining.”

• Logical Connectives:

– Negation (¬p): Logical NOT. True if p is false.

– Conjunction (p ∧ q): Logical AND. True if both p and q are true.

– Disjunction (p ∨ q): Logical OR. True if at least one of p or q is true.

– Implication (p→ q): Logical IF-THEN. True unless p is true and q is false.

– Biconditional (p ↔ q): Logical IF AND ONLY IF. True if p and q have the
same truth value.

10.3 Truth Tables

Below is the truth table for the propositions P and Q, along with the logical operations:
¬P (NOT P ), P ∧Q (AND), P ∨Q (OR), P → Q (implies), and P ↔ Q (biconditional).

P Q ¬P P ∧Q P ∨Q P → Q P ↔ Q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

10.4 Examples

• O: 5 is an odd number.

• P : Paris is the capital of France.

• (O → P ): True or False?

55



– Answer: 5 is an odd number, so O = True. Paris is the capital of France, so
P = True. Therefore, T → T = T .

• E: 5 is an even number.

• M : Moscow is the capital of France.

• (E →M): True or False?

– Answer: 5 is NOT an even number, so E = False. Moscow is NOT the
capital of France, so M = False. Therefore, F → F = T .

Truth Table

P Q P ∧ (P →
Q)

¬(¬P ∨¬Q) (P ∧ (P → Q)) ⇐⇒
(¬(¬P ∨ ¬Q))

F F F F T

F T F F T

T F F F T

T T T T T

10.5 Limitations of Propositional Logic

Propositional logic, while foundational and useful in many contexts, has several limita-
tions:

• Lack of Quantifiers: Propositional logic does not support quantifiers such as ∀
(for all) or ∃ (there exists), which are essential for reasoning about collections or
statements involving variables.

• No Internal Structure of Statements: In propositional logic, statements are
treated as atomic units without any internal structure. For example, the state-
ment ”John is tall” cannot be analyzed further to understand its components (e.g.,
subject, predicate).

• Inability to Represent Relationships: Propositional logic cannot express re-
lationships between objects. For example, ”John is taller than Mary” cannot be
expressed using propositional logic alone.

• Limited Expressiveness: Complex mathematical and real-world reasoning often
require richer frameworks such as first-order logic (predicate logic) or higher-order
logic, which propositional logic cannot accommodate.

• Scalability Issues: As the number of propositions increases, the truth table ap-
proach for evaluating logical expressions becomes computationally infeasible due to
exponential growth in rows.
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• No Handling of Uncertainty: Propositional logic is strictly binary (true or
false). It cannot model uncertainty or degrees of truth, which are better handled
by probabilistic logic or fuzzy logic.

Despite these limitations, propositional logic serves as a critical foundation for more
advanced forms of logic and computational reasoning. Its simplicity and clarity make it
a useful tool for introducing logical concepts and reasoning patterns.

10.6 Comparison of Propositional Logic, First-Order Logic, and
Probability Theory

Language Ontological Commitment
(What exists in the world)

Epistemological Commit-
ment (What an agent be-
lieves about facts)

Propositional
logic

Facts True/False/Unknown

First-order
logic

Facts, objects, relations True/False/Unknown

Temporal
logic

Facts, objects, relations, times True/False/Unknown

Probability
theory

Facts Degree of belief ∈ [0, 1]

Fuzzy logic Facts with degree of truth ∈ [0, 1] Known interval value

10.7 Example of a Model in First-Order Logic

A model in First-Order Logic consists of a domain of discourse, objects, predicates, and
functions. Below is an example of a simple model:

• Domain: {Alice, Bob, Charlie} (people in the model).

• Predicates:

– Likes(x, y): Represents that person x likes person y.

– Friend(x, y): Represents that person x is a friend of person y.

• Functions:

– Parent(x): Represents the parent of person x.

• Statements:

– ∀x (Likes(x,Alice) → Friend(x,Alice)): ”Everyone who likes Alice is her
friend.”
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– ∃x (Likes(Bob, x) ∧ Friend(Bob, x)): ”There exists someone whom Bob likes
and is also Bob’s friend.”

– Likes(Alice, Bob): ”Alice likes Bob.”

– Parent(Charlie) = Alice: ”Alice is the parent of Charlie.”

• Interpretation:

– Likes(Alice, Bob) = True.

– Likes(Bob,Alice) = False.

– Friend(Alice, Bob) = True.

– Parent(Charlie) = Alice.

Explanation: This model represents a small social network where relationships be-
tween individuals are described using predicates like Likes and Friend. Functions like
Parent capture more complex relationships. Quantified statements allow reasoning about
all or some members of the domain.

10.8 Analysis of Logical Statements

1. ∃x, y x = y Validity: Valid
This statement is valid because we can always assign x = y to be any element in a
non-empty domain, satisfying the condition x = y.

2. (∃x x = x) =⇒ (∀y∃z y = z) Validity: Valid
The antecedent ∃x x = x is always true since every object in any domain is equal
to itself. The consequent ∀y∃z y = z is also always true because we can take z = y
for any y in the domain, making the implication valid.

3. ∀x P (x) ∨ ¬P (x) Validity: Valid
This statement is valid as it is an instance of the law of the excluded middle in
classical logic, stating that for any proposition P (x), either P (x) or ¬P (x) must
hold.

4. ∃x P (x) Satisfiability: Satisfiable, but not valid
This statement is satisfiable if there exists at least one x in the domain for which
P (x) is true. However, it is not valid because it depends on the actual domain
and predicate P (x)—if the domain is empty or P (x) is false for all x, it would be
unsatisfiable.

5. ∃x, y Job(Sam, x) ∧ Job(Sam, y) ∧ ¬(x = y) Correctness: Correct
This statement correctly represents that Sam has two distinct jobs. It asserts that
there exist two distinct entities x and y for which the predicate Job(Sam, ·) holds,
and x ̸= y ensures that they are different.

6. ∀x, s Member(x,Add(x, s)) Correctness: Correct
This statement correctly represents that x is a member of the set resulting from
adding x to the set s. It explicitly states that for any x and s, x belongs to Add(x, s).
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7. ∀x, s Member(x, s) =⇒ (∀y Member(x,Add(y, s))) Correctness: Incorrect
This statement does not correctly represent set membership. It implies that if x is
a member of s, then x must also be a member of the set resulting from adding any
element y to s, which is not necessarily true in standard set theory.

10.9 Stochastic, Multi-Agent, Partial Observability in Logic

1. Stochastic Systems: A stochastic system is one in which outcomes are determined
by probabilistic transitions. Formally, this can be expressed as:

∀s, a, s′ P (s′ | s, a) ≥ 0 ∧
∑
s′

P (s′ | s, a) = 1

Here, P (s′ | s, a) represents the probability of transitioning to state s′ from state s
after action a. This captures the uncertainty inherent in the system.

2. Multi-Agent Systems: Multi-agent systems involve multiple decision-making en-
tities. Each agent i has its own actions ai and possibly its own utility or objective
function Ui(s). Interactions can be expressed as:

∀i, s, ai Ui(s) = f(s, a1, . . . , an)

where f describes the joint effects of the actions of all agents. Coordination, com-
petition, or collaboration among agents can be modeled depending on f and the
domain.

3. Partial Observability: In partially observable environments, agents do not have
full access to the system state s but instead receive observations o drawn from an
observation function:

∀s, o, a P (o | s, a) ≥ 0 ∧
∑
o

P (o | s, a) = 1

The agent’s belief about the state can be updated using a Bayesian filter:

b′(s′) = η · P (o | s′, a)
∑
s

P (s′ | s, a)b(s)

where b(s) is the belief over the state, b′(s′) is the updated belief, and η is a nor-
malizing constant.
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10.10 Forward and Backward Chaining

Forward Chaining

Forward chaining is a data-driven approach that starts with known facts and applies
inference rules to extract more data until a goal is reached.

Algorithm:

1. Initialize the working memory with known facts.

2. While the goal is not reached:

• Identify rules where all premises are true based on the working memory.

• Apply the rule to infer new facts.

• Add the inferred facts to the working memory.

Example Rule: If A ∧B → C, and A,B are true, then infer C.

10.11 Backward Chaining

Backward chaining is a goal-driven approach that starts with a hypothesis and works
backward to determine if the known facts support the hypothesis.

Algorithm:

1. Start with the goal or query.

2. If the goal is a known fact, succeed.

3. If not, find rules that can infer the goal.

4. Recursively apply backward chaining on the premises of the rules.

5. If all premises are proven true, the goal is true.

10.12 Comparison

• Forward Chaining: Efficient for discovering all possible conclusions.

• Backward Chaining: Efficient for answering specific queries.

10.13 Graphical Representation

Forward Chaining Graph

A B

C
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Backward Chaining Graph

C

A B
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11 Planning under Uncertainty

”In which we see how an agent can take advantage of the struc-
ture of a problem to efficiently construct complex plans of action.”

— Stuart Russell, Peter Norvig

11.1 Markov Decision Process (MDP)

AMarkov Decision Process (MDP) provides a mathematical framework for modeling
decision-making where outcomes are partly random and partly under the control of a
decision-maker. It is widely used in fields such as reinforcement learning, operations
research, and robotics.

Definition

An MDP is defined as a tuple (S,A, P,R, γ), where:

• S: A finite set of states, representing the environment’s possible configurations.

• A: A finite set of actions available to the agent.

• P : A state transition probability function P (s′|s, a), specifying the probability of
transitioning to state s′ from state s when action a is taken.

• R: A reward function R(s, a, s′), which specifies the immediate reward received
after transitioning from state s to state s′ by taking action a.

• γ: A discount factor, 0 ≤ γ ≤ 1, which determines the importance of future rewards.

11.2 The Bellman Equation (Value Iteration Algorithm)

The Bellman equation is a key concept in MDPs, used to compute the optimal policy
and value functions. The value function V (s) represents the expected cumulative reward
starting in state s and following an optimal policy π. It is defined as:

V (s) = max
a∈A

∑
s′∈S

P (s′|s, a) [R(s, a, s′) + γV (s′)]

The optimal policy π∗(s) can be derived by choosing the action a that maximizes the
expected cumulative reward:

π∗(s) = argmax
a∈A

∑
s′∈S

P (s′|s, a) [R(s, a, s′) + γV (s′)]

Example: Solving for A3 and B3

We are solving for the values of the states A3 and B3 in the following stochastic 4x3 grid.
The transitions are stochastic:

• The intended action succeeds with probability p = 0.8.
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• Other transitions (e.g., unintended moves to adjacent cells) occur with probability
1− p = 0.2.

• The discount factor is set to γ = −3, meaning future rewards are penalized more
heavily.

Grid Representation 
0 0 A3 +100

0 Blocked B3 −100

0 0 0 0


• +100 represents the goal state (high reward).

• −100 represents the penalty state (high negative reward).

• Blocked represents an obstacle that cannot be traversed.

• A3 and B3 are the states we want to solve for.

11.3 Bellman Equation

The value for a state V (s) is computed using the Bellman equation:

V (s) = max
a∈A

∑
s′

P (s′|s, a) [R(s, a, s′) + γV (s′)]

where:

• γ = −3: Negative discount factor.

• R(s, a, s′): Reward for transitioning to s′.

• P (s′|s, a): Transition probabilities.

Example Calculation for A3

Let us compute V (A3) with γ = −3. The possible actions are up, down, left, and right.
Using the Bellman equation:

V (A3) = max

[
0.8 ·

(
R + γV (A4)

)
+ 0.1 ·

(
R + γV (A2)

)
+ 0.1 ·

(
R + γV (B3)

)]
Substitute γ = −3, V (A4) = +100, V (B3) = −100, and assume V (A2) = 0 for simplicity:

V (A3) = max

[
0.8 · (0− 3 · 100) + 0.1 · (0− 3 · 0) + 0.1 · (0− 3 · −100)

]

V (A3) = max

[
0.8 · (−300) + 0 + (30)

]
V (A3) = max

[
− 240 + 30

]
= −210
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Example Calculation for B3

From B3, the possible actions are similar. Using the Bellman equation:

V (B3) = max

[
0.8 ·

(
R + γV (A3)

)
+ 0.1 ·

(
R + γV (B2)

)
+ 0.1 ·

(
R + γV (B4)

)]
Substitute γ = −3, V (A3) = −210, V (B4) = −100, and assume V (B2) = 0:

V (B3) = max

[
0.8 · (0− 3 · −210) + 0.1 · (0− 3 · 0) + 0.1 · (0− 3 · −100)

]

V (B3) = max

[
0.8 · 630 + 0 + 30

]
V (B3) = max

[
504 + 30

]
= 534

Results

The computed values for the states are:

V (A3) = −210, V (B3) = 534

These values indicate how future penalties/rewards are amplified or diminished with
the negative discount factor.

Partially Observable Markov Decision Processes (POMDPs)

A Partially Observable Markov Decision Process (POMDP) extends the Markov
Decision Process (MDP) framework to scenarios where the agent does not have full knowl-
edge of the current state. Instead, the agent must rely on indirect observations to infer
the state.

Definition

A POMDP is defined as a tuple:

(S,A, P,R,Ω, O, γ)

where:

• S: A finite set of states.

• A: A finite set of actions.

• P (s′|s, a): Transition probabilities, as in MDPs.

• R(s, a): Reward function.

• Ω: A finite set of observations.

• O(o|s′, a): Observation probabilities, representing the likelihood of observing o after
transitioning to state s′ with action a.

• γ: Discount factor.

64



Key Features

Belief States:

1. Since the agent does not know the exact state, it maintains a belief state, which is
a probability distribution over all possible states.

2. For example, if S = {s1, s2, s3}, a belief state might be b = [0.2, 0.5, 0.3], meaning
there is a 20% chance the agent is in s1, 50% in s2, and 30% in s3.

Optimal Policy:

1. The goal is to find an optimal policy that maps belief states to actions in order to
maximize expected cumulative rewards.

2. Unlike MDPs, where policies depend on states, POMDP policies depend on belief
states.

Applications

POMDPs are used in scenarios where full observability is impractical, such as:

• Robotics: Navigating a partially observable environment.

• Healthcare: Diagnosing a disease based on uncertain symptoms and test results.

• Speech Recognition: Mapping uncertain acoustic signals to linguistic meanings.

Challenges

POMDPs are computationally more complex than MDPs due to:

• The need to maintain and update belief states.

• The exponentially larger space of possible belief states compared to regular states.

• Solving POMDPs optimally is often intractable for large problems.

Simplified Solution Approaches

While solving a POMDP optimally is challenging, several approximate methods exist,
such as:

• Point-Based Value Iteration (PBVI): An approximate algorithm for solving
POMDPs by focusing on a finite set of belief points.

• Monte Carlo Sampling: Using random samples to approximate the optimal
policy.
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